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Path-integral formalism for classical Brownian motion in a general environment
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The path-integral formalism for classical Brownian motion in a general environment is derived from
the first principles of microdynamics by using the path-integral formulation of classical mechanics. The
classical influence functional, which contains a nonlocal dissipation term and a colored noise term, is in-
troduced. We show that there exists a classical fluctuation-dissipation relation. We also compare this
classical influence functional theory with the well-known quantum influence-functional theory.
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The trajectory of a classical particle in phase space is
uniquely determined by Newton’s equations (or
Hamilton’s equations) with given initial conditions.
However, if the particle is influenced by external stochas-
tic forces (usually called noise), its classical trajectory is
no longer uniquely determined. It can travel through
phase space by many different paths, and a statistical
probability can be assigned to each physically allowed
trajectory. Taking the average over these different paths
is equivalent to taking a path integral. In principle, there
exists a path-integral formulation for classical Brownian
motion.

The path-integral formulation for classical free
diffusive Brownian motion under the influence of white
noise is well known.

x t
J(xf,tlx,«,O)szx_fDx exp {— ;;:T fods%x 2} . (1)

It is the Wiener integral in statistical physics [1], where
J(x,,t|x;,0) is the phase-space conditional probability, y,
is the damping constant (assumed very large since it is
diffusive motion), T is the temperature, and the external
potential ¥V (x) is zero.

In a general environment, the Brownian motion can be
very complicated. The noise can be colored and the
damping force can contain a memory function, so the
Brownian motion can be non-Markovian [2]. The non-
Markovian character strongly influences the dynamics,
such as Kramers rate in bistable systems [3] or angular-
momentum autocorrelation functions of rotational
Brownian motion in some molecular systems [4]. The
path-integral formalism may help us to understand the
classical Brownian motion in a more general environ-
ment.

To set up a path-integral formulation for a classical
Brownian particle in a general environment is a difficult
problem and has been found only in some limiting cases.
Among these previous works, Dykman and co-workers
[5] first reported the path-integral formulation for a

47

Brownian particle with white noise and a linear local
damping force (the damping constant is not necessarily
very large); Stratonovich [6], and more recently,
McKane, Luckock, and Bray [7] formulated the path-
integral formulation for a diffusive Brownian particle
with colored noise and a local damping force (no memory
function). All these previous works were derived from a
phenomenological (generalized) Langevin equation in-
stead of the first principles of microdynamics.

In quantum stochastic dynamics, a path-integral for-
mulation of the quantum Brownian motion in a general
environment was developed long ago. Feynman and Ver-
non first introduced the quantum influence-functional
theory [8]. Since then, this quantum path-integral formu-
lation has been generalized to more complicated cases,
even to quantum stochastic fields [9]. The quantum mas-
ter equations also have been derived by using this path-
integral formalism [10].

This paper reports a path-integral formulation for clas-
sical Brownian motion with a general nonlocal dissipa-
tion and colored noise derived from the first principles of
classical microdynamics. We have developed a classical
influence-functional theory to treat the nonlocal dissipa-
tion and the colored noise. This classical theory could be
viewed as a classical analogy of the quantum influence-
functional theory. The reason why the quantum theory
had been developed long before the classical theory in
this particular problem is that, unlike quantum mechan-
ics, the path-integral formulation for classical mechanics
[11] has been only very recently discovered.

We consider a Brownian particle (the system) interact-
ing with its environment (the bath), which is assumed to
be very large and at thermal equilibrium. We use a set of
harmonic oscillators to model the environment. The sys-
tem plus environment is defined to be a closed system so
we can use Newtonian mechanics to describe its motion.
The dynamics of the Brownian particle can be obtained
by averaging away the dynamics of the bath variables
over some statistical ensemble of the initial conditions of
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the bath variables.

The standard method to reduce the dynamics of the
system plus environment to the dynamics of the system
(the Brownian particle in our case) is the projection opera-
tor method [12]. Zwanzig used this system-bath model to
derive a Langevin equation and to illustrate the concepts
of noise and damping [13]. However, the projection
operator method usually first gives a master equation
(such as a Fokker-Planck equation) or a stochastic dy-
namics equation (such as Langevin equation). Additional
work is required to convert the master equation or the
stochastic dynamics equation to the path-integral formu-
lation. In this letter, as another purpose of this work, we
develop a new method to carry out the reduction of the
dynamics of the system plus environment to the dynam-
ics of the system and derive a path-integral formulation
for the classical Brownian motion from microdynamics.

The new method is based on the path-integral formula-
tion of classical mechanics [11] developed very recently in
a study of hidden supersymmetries in classical mechan-
ics. It appears quite meaningless to apply path integrals
to pure classical mechanics (not containing any stochastic
forces) because there is only one physical path with any
given initial conditions (so the probability for this physi-
cal path is one and is zero for other possible paths).
However, this path-integral of classical mechanics allows
us to carry out the average over dynamics of the bath
variables in a very simple and explicit way. A classical
influence functional in the classical path integral is intro-
duced. All the influence of the bath variables is now con-
tained in this functional. After this averaging procedure,
since it is already in path-integral form, we automatically
obtain the path-integral formulation for classical Browni-
an motion.

Let us consider a Brownian particle with mass M and
external potential V(x). Its environment is a set of har-
monic oscillators with mass m, and natural frequency
,. The particle is coupled linearly to each bath oscilla-
tor with strength C,. The Hamiltonian of the combined
system plus environment is

H[x,p,q,k]={(p>/2M)+V (x)}

+3 {(k,f/2m,,)+%m,,wf,q,f}+z{c,,xq,,} , ()

where x and p, g, and k, are the coordinate and canonical
momentum of the Brownian particle and the nth bath os-
cillator, respectively. The classical Hamilton’s equations
are

U =0"3,H[$D], (3)

where ¢°=(x,9;,...,9nx:P,k{,...,ky), a=1,...,2N
+2, and 0= —w® is the element of the (2N +2)
X (2N +2) symplectic matrix.

The time evolution of classical phase-space probability
distribution function of the system plus the bath P(¢,?) is
governed by the following Liouville equation:

P(¢yt)={P’H}PB7 (4)

where { }pg is the Poisson bracket. The formal solution of
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(4) is
P(¢;,0)= [ d*N*2¢,8°Y *2[ ¢ — $4(1,6,)1P(¢,0)

= [d*N*24,0(¢,,114,,00P(4,,0) , (5)

where ¢%(t,¢,) is a classical path that satisfies Hamilton’s
equation (3) with initial conditions ¢3(0)=¢7. J(¢,,t|¢,,0)
is defined as the conditional probability of the system
plus the bath.

Following the work done by Gozzi, Reuter, and
Thacker [11], we rewrite the conditional probability (5) in
the form of the path integral of classical mechanics,

J(¢f,t‘¢,',0)=fDZN+2¢fDZN+2)\,fD2N+ZC

X fdzN“Eexp

ifar], ©
subject to the boundary conditions,

#°0)=¢{, ¢(1)=¢% . (7

In (6), A (s) are 2N +2 auxiliary dynamical variables.
We also have introduced 2N +2 Grassman variables
¢%s) and their conjugates ¢,(s). These Grassman vari-
ables are called ghost fields in field theory. The general-
ized Lagrangian L in (6) is

L=2%,(5){$s)— ™3, H[$]}
+ic,(5){8803; —0*d.0,H[$]}c’(s) . (8)
We note the following identity [11]:

fD2N+2ch2N+2c
X exp ifo'ds ic, (899, — ™39, H[$]}cks) L =1, (9)

which implies that the ghost field part of the path in-
tegral in (6) can be neglected.

Since we are only interested in the dynamics of the
Brownian particle, we define the reduced phase-space
probability distribution function for the Brownian parti-
cle alone,

+
Pxp)=T1 [ da,

+ o
Xf7 dk,P(X,q1,...,qn:DyK1s - Kyst) .

(10)

If we assume that at r =0 the system and the bath are un-
correlated,

»ky,0)

P(x7QIr L :%»P:kly e

EPr(xrva)Pb(ql»--~’QN’k1)-~-)kN,O)y (11)

then . .
Pr(xﬁpf’t): fﬁ dx; f_ dPiJr(xf,P[,t|xi,P,',O)P,(x,',Pi70) ,

(12)
where the reduced conditional probability for the
Brownian particle is
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Jr(xf’pf’t|xirpi70)
s ’r .r! . p(s) .r! . .

=le_ Dx fm Dp [ DA, [ Dhjexp [z S ds b)) = 22 ]+zfods k,,(s)[p(s)-i—V(x)]]F[x,p,kx,)»p]. (13)

The classical influence functional F[x,p,A,,A,]in (13) is
+ o0 + o + o + Bw” k,?, 1 Inf K
F[x’prkxy)hp]zn f_w dq"ff,m dk"ff,w dq,; f*w dk,; 2 exp {_B —2’?‘+—2"mnw%qrfi fq ) Dq, fk Akan
t k,,(S) .
x [ Di,, [ Dy expi [ dsih, () |4a(s)= =2 |+ ($)[Ky(8)+m,0lg,()+Cox ()] 44, (5)C,q,(8) |, (14)

where we assume the bath is at thermal equilibrium with temperature T so the Maxwell-Boltzmann distribution has
been used. Performing the path integral in (14) and using the classical trajectory of bath oscillator g,(s), and k,(s),, we

obtain

t t . t S
F[x,p,Ax,A,]=exp [——%fods,fodszkp(s,)v(sl—sz))»,,(sz)+21 fodsl}»p(sl)fo ds,m(s;—s,)x(s,) |, (15)
[
where wC2
W(s)=2kTy(s) (16) Heo)=3 70" —dlo=a.), (19)
is the noise kernel, and which only depends on the properties of the bath (the
n(s)=(d /ds)y(s) , (17)  bath harmonic-oscillator number density and coupling
where constants). This spectral density fully determines the
(s)= f tedo I(w) cosws (18) properties of the noise and dissipation kernels, and there-
Y o T o fore the properties of the Brownian dynamics.

is the dissipation kernel. Thus the first term in (15) is the
noise term and second term is the dissipation term. The
dissipation spectral density I (w) in (18) is

Substituting the classical influence functional (15) into
the reduced conditional probability (13) and performing
the path integral for A (s) and p (s) only gives

X P t t
5,Gipp st 0= [ 77 x [ Dayexp [ =4 [ s, [ dsahy(sMsi =52 (s2) |

X exp [i fotdslkp(sl) [Mic'(sl)+2foxlds2n(sl—sz)x(s2)+ V'(x) ] } . (20)

The boundary conditions for path x (s) denote x (0)=x; and x(0)=p, /M, x (1)=x, and X(2)=p,/M. It is clear that
the above classical influence corresponds to the following generalized Langevin equation:

M5c‘(s)=~V’(x)42fOSds’77(s — s x(s)F A (s)

21

and the auxiliary variable A,(s) is just a Gaussian colored noise source which has the following moments:

(A,(s))=0,
(Ry(sA,(55)) =vls, —5,)=2kTyo(s; —s,) .

(22)

It is actually the well-known classical fluctuation-dissipation relation [14].

Finally we perform the path integral over A,(s) in (20) to obtain the path-integral formulation of classical Brownian

motion in a general environment,

X P
Jr(xf:pf)t'xivpi’o)z fx fp_fDx exXp

i

where .
Q(s)=M5c’(s)+2des'77(s —s")x(s")+V'(x), (24)

and v~ !(s)=(B/2)y " !s) is the inverse of v(s).

This path-integral formalism could be applied to many
nonequilibrium statistical physics problems. In many
physics applications, an important class of dissipation
spectral densities [15] is

I(a))=‘y0a>(m/(7))5e_(“’2/"2) , (25)

— 1 [[ds, [ dsa0 (v 515000520 | (23)

—

where y, is the damping constant and @ is a frequency
scale usually taken to be the cutoff frequency A. An envi-
ronment is classified as Ohmic I(w)~w with (s=0),
supra-Ohmic I(w)~w'*, s >0, or sub-Ohmic —1<s<0.
In general, the dissipation kernel y(s) is not a § function,
so the dissipation force contains a memory function.
From the fluctuation-dissipation relation (22), the noise
kernel is also a nonlocal kernel, so the noise is colored.
The most studied case is the Ohmic environment
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(s =0) which induces a dissipative force linear in the ve-
locity of the Brownian particle provided the cutoff fre-
quency A is very large. In this special case, I (w)=Yyw,
so that y(s)=v,8(s) and v~ 1(s)=(1/2y,kT)8(s); conse-
quently we get

J,(xf,pf,ﬂx,»,p,-,O)

1
4y kT

s _ ! . .
_fxfpi Dx exp fods[Mx(s)-H/ox(s)

+V(x)1* |, (26)

which is the result given by Dykman and co-workers [5].
We close this letter with a few general remarks. First,
this path-integral formalism of classical Brownian motion
in a general environment is exact. It is derived from the
first principles of microdynamics. The only assumption
is that the Brownian particle and its environment are not
correlated at the initial time ¢ =0. Further generaliza-
tion of these results to cases where the Brownian particle
and its environment are correlated initially is possible.
Second, this path-integral formalism can be immediate-
ly generalized to nonlinearly coupled cases. If the cou-
pling term in the Hamiltonian (2) is C,g,f (x), then one
can replace x (s) in the dissipation term in (15) by f(x (s))

and replace A,(s) by f'(x)A,(s) in both the dissipation
and noise terms. This corresponds to a nonlinear (nonlo-
cal) damping force in the classical Langevin equation and
to nonlinearly coupled colored noise (multiplicative
noise). However, the classical fluctuation-dissipation re-
lation for the nonlinear case is still exactly the same as
for the linear case (22) [9]. The problem of nonlinear
damping and multiplicative noise has important applica-
tions in many branches of physics [2].

Third, the dissipation kernel (18) and the dissipation
spectral density (19) are exactly the same as the corre-
sponding terms in the quantum influence functional. The
noise kernel (16) and the fluctuation-dissipation relation
(22) are the same as the corresponding terms of the quan-
tum influence functional at high temperature [9]. This is
expected since the classical theory is the high-
temperature limit of the quantum theory. The proof of
this correspondence between quantum and classical
influence-functional theories of Brownian motion and de-
tails of the present study will be presented elsewhere [16].
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